世界七大数学难题为什么没有哥德巴赫猜想

导读 当前大家对于哥德巴赫猜想 世界近代三大数学难题之一都是颇为感兴趣的,大家都想要了解一下哥德巴赫猜想 世界近代三大数学难题之一,那...

当前大家对于哥德巴赫猜想 世界近代三大数学难题之一都是颇为感兴趣的,大家都想要了解一下哥德巴赫猜想 世界近代三大数学难题之一,那么小美也是在网络上收集了一些关于哥德巴赫猜想 世界近代三大数学难题之一的一些信息来分享给大家,希望能够帮到大家哦。

1、哥德巴赫1742年在给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和

2、但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。

3、因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。

4、(n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和)欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。

5、今日常见的猜想陈述为欧拉的版本。

6、把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。

7、1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。

8、今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。

9、从关于偶数的哥德巴赫猜想,可推出:任何一个大于7的奇数都能被表示成三个奇质数的和。

10、后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。

11、若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。

12、2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!